feat: 简单的接口

This commit is contained in:
loveuer 2024-06-05 16:37:12 +08:00
commit 4b2fbfa1af
4 changed files with 158 additions and 0 deletions

6
.gitignore vendored Normal file
View File

@ -0,0 +1,6 @@
.vscode
.idea
venv
*.jpg
*.jpeg
.DS_Store

43
main.py Normal file
View File

@ -0,0 +1,43 @@
import cv2
import numpy as np
def detect_circles(image_path):
# 读取图像
img = cv2.imread(image_path, cv2.IMREAD_COLOR)
# 将图像转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 使用高斯模糊处理图像
blurred = cv2.GaussianBlur(gray, (9, 9), 2)
# 使用霍夫圆检测法检测圆圈
circles = cv2.HoughCircles(blurred, cv2.HOUGH_GRADIENT, dp=1.2, minDist=30,
param1=80, param2=38, minRadius=15, maxRadius=60)
# 确认至少检测到一个圆圈
if circles is not None:
circles = np.round(circles[0, :]).astype("int")
print(f"检测到 {len(circles)} 个圆圈")
for i, (x, y, r) in enumerate(circles, start=1): # 从1开始计数
# 在图像中绘制圆圈
cv2.circle(img, (x, y), r, (0, 255, 0), 4)
# 在图像中绘制圆心
cv2.circle(img, (x, y), 2, (0, 128, 255), 3)
# 在图像中绘制圆圈编号
cv2.putText(img, f'{i}', (x - 10, y + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
# 显示结果图像并处理退出事件
while True:
cv2.imshow("detected circles", img)
key = cv2.waitKey(1) & 0xFF
if key == 27: # ESC键的ASCII码是27
break
cv2.destroyAllWindows()
else:
print("没有检测到圆圈")
# 调用函数并传递图像路径
detect_circles("image2.jpg")

39
requirements.txt Normal file
View File

@ -0,0 +1,39 @@
annotated-types==0.7.0
anyio==4.4.0
certifi==2024.6.2
click==8.1.7
dnspython==2.6.1
email_validator==2.1.1
exceptiongroup==1.2.1
fastapi==0.111.0
fastapi-cli==0.0.4
h11==0.14.0
httpcore==1.0.5
httptools==0.6.1
httpx==0.27.0
idna==3.7
Jinja2==3.1.4
markdown-it-py==3.0.0
MarkupSafe==2.1.5
mdurl==0.1.2
numpy==1.26.4
opencv-python==4.10.0.82
orjson==3.10.3
pillow==10.3.0
pydantic==2.7.3
pydantic_core==2.18.4
Pygments==2.18.0
python-dotenv==1.0.1
python-multipart==0.0.9
PyYAML==6.0.1
rich==13.7.1
shellingham==1.5.4
sniffio==1.3.1
starlette==0.37.2
typer==0.12.3
typing_extensions==4.12.1
ujson==5.10.0
uvicorn==0.30.1
uvloop==0.19.0
watchfiles==0.22.0
websockets==12.0

70
svc.py Normal file
View File

@ -0,0 +1,70 @@
from fastapi import FastAPI, UploadFile, HTTPException
from pydantic import BaseModel
from PIL import Image
import io
import base64
import cv2
import numpy as np
def opencv_image_to_bytes(opencv_image):
"""将 OpenCV 图像对象转换为 bytes 对象"""
# 使用 cv2.imencode() 将图像编码为 numpy 数组
ret, buffer = cv2.imencode('.jpg', opencv_image)
# 将 numpy 数组转换为 bytes
img_bytes = buffer.tobytes()
return img_bytes
def handleImageByCV2(bs: bytes) -> {int, bytes}:
# 读取图像
img = cv2.imdecode(np.frombuffer(bs, np.uint8), cv2.IMREAD_COLOR)
# 将图像转换为灰度图
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
# 使用高斯模糊处理图像
blurred = cv2.GaussianBlur(gray, (9, 9), 2)
# 使用霍夫圆检测法检测圆圈
circles = cv2.HoughCircles(blurred, cv2.HOUGH_GRADIENT, dp=1.2, minDist=30,
param1=80, param2=38, minRadius=15, maxRadius=60)
# 确认至少检测到一个圆圈
if circles is not None:
circles = np.round(circles[0, :]).astype("int")
print(f"检测到 {len(circles)} 个圆圈")
for i, (x, y, r) in enumerate(circles, start=1): # 从1开始计数
# 在图像中绘制圆圈
cv2.circle(img, (x, y), r, (0, 255, 0), 4)
# 在图像中绘制圆心
cv2.circle(img, (x, y), 2, (0, 128, 255), 3)
# 在图像中绘制圆圈编号
cv2.putText(img, f'{i}', (x - 10, y + 10), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (0, 0, 255), 2)
return len(circles), opencv_image_to_bytes(img)
else:
return 0, opencv_image_to_bytes(img)
app = FastAPI()
class ImageResponse(BaseModel):
image_base64: str
circle_count: int
@app.post("/upload_image", response_model=ImageResponse)
async def upload_image(image_file: UploadFile):
if not(image_file.filename.endswith('.jpg') or image_file.filename.endswith('.jpeg')):
raise HTTPException(status_code=400, detail="Only jpg or jpeg files are supported")
image_bytes = await image_file.read()
count, new_bytes = handleImageByCV2(image_bytes)
img_base64 = base64.b64encode(new_bytes).decode('utf-8')
return ImageResponse(image_base64=img_base64, circle_count=count)
if __name__ == '__main__':
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)